A GPIU method for fractional diffusion equations
نویسندگان
چکیده
منابع مشابه
Fractional diffusion limit for collisional kinetic equations: A moments method
This paper is devoted to hydrodynamic limits of linear kinetic equations. We consider situations in which the thermodynamical equilibrium is described by a heavy-tail distribution function rather than a maxwellian distribution. A similar problem was addressed in [14] using Fourier transform and it was shown that the long time/small mean free path behavior of the solution of the kinetic equation...
متن کاملA radial basis functions method for fractional diffusion equations
Article history: Received 13 April 2012 Received in revised form 10 October 2012 Accepted 27 October 2012 Available online 8 December 2012
متن کاملFractional diffusion equations by the Kansa method
This study makes the first attempt to apply the Kansa method in the solution of the time fractional diffusion equations, in which the MultiQuadrics and thin plate spline serve as the radial basis function. In the discretization formulation, the finite difference scheme and the Kansa method are respectively used to discretize time fractional derivative and spatial derivative terms. The numerical...
متن کاملA Meshless Method for Numerical Solution of Fractional Differential Equations
In this paper, a technique generally known as meshless numerical scheme for solving fractional dierential equations isconsidered. We approximate the exact solution by use of Radial Basis Function(RBF) collocation method. This techniqueplays an important role to reduce a fractional dierential equation to a system of equations. The numerical results demonstrate the accuracy and ability of this me...
متن کاملAn explicit high order method for fractional advection diffusion equations
We propose a high order explicit finite difference method for fractional advection diffusion equations. These equations can be obtained from the standard advection diffusion equations by replacing the second order spatial derivative by a fractional operator of order α with 1 < α ≤ 2. This operator is defined by a combination of the left and right Riemann–Liouville fractional derivatives. We stu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2020
ISSN: 1687-1847
DOI: 10.1186/s13662-020-02731-9